Contents

Definition of a Vector Field	. 1
Examples of Vector Fields	. 1
2.1 Velocity Fields	. 1
2.2 Gravitational Fields	. 2
2.3 Electric Force Fields	. 2
Conservative Vector Fields	. 3
_	
	Examples of Vector Fields

Vector Fields

Lucia

1 Definition of a Vector Field

A vector field over the region R is any function \mathbf{F} that assigns a vector $\mathbf{F}(x, y)$ to every point in the region. Similarly, over a solid region Q, \mathbf{F} must assign a vector $\mathbf{F}(x, y, z)$ to every point in the solid.

A vector field will consist of an infinite number of vectors, although sketching several representative vectors can help show the general behavior of the field.

Given a vector field

$$\mathbf{F}(x, y, z) = M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + P(x, y, z)\mathbf{k}$$

it is continuous at a point if and only if all component functions are continuous at the point.

2 Examples of Vector Fields

2.1 Velocity Fields

Velocity fields describe the motion of particles in a plane or in space, or the flow of fluids through a container or around a moving object.

Figure 1: Velocity field about a rotating wheel, $\mathbf{F}(x,y) = \langle -y, x \rangle$

2.2 Gravitational Fields

Gravitational fields state that the force exterted on a particle of mass m_1 at (x,y,z) by another particle with mass m_2 at the origin is

$$\mathbf{F}(x, y, z) = \frac{-Gm_1m_2}{x^2 + y^2 + z^2}\mathbf{u}$$

where $G \approx 6.6743 \times 10^{-11}$. Given a position vector $\mathbf{r} = \langle x, y, z \rangle$, the field can be rewritten as

$$\mathbf{F}(x,y,z) = \frac{-Gm_1m_2}{\|\mathbf{r}\|^2}\mathbf{u}$$

where $\mathbf{u} = \frac{\mathbf{r}}{\|\mathbf{r}\|}$.

2.3 Electric Force Fields

Electric force fields state that the force exterted on a particle with charge q_1 at (x, y, z) by a particle with charge q_2 at the origin is

$$\frac{cq_1q_2}{\|\mathbf{r}\|^2}\mathbf{u}$$

where \mathbf{u} and \mathbf{r} have the same definitions as they did for gravitational fields. c is a constant that depends on what units are used for $\|\mathbf{r}\|$, q_1 , and q_2 .

Note that both electric force fields and gravitational fields have a similar form, called an **inverse** square field.

Definition of an Inverse Square Field

Let $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$. The inverse square field of \mathbf{r} is

$$\mathbf{F}(x, y, z) = \frac{k}{\|\mathbf{r}\|^2} \mathbf{u}$$

where k is a real number, and $\mathbf{u} = \frac{\mathbf{r}}{\|\mathbf{r}\|}$.

3 Conservative Vector Fields

3.1 Gradients, Curl, and Divergence

The gradient operator, ∇ , is defined as

$$\nabla f(x,y,z) = \langle f_x, f_y, f_z \rangle$$

The gradient operator is used in the definition of both curl and divergence, two operations that describe the behavior of a vector field at any given point.

Divergence If div F = 0, the function is **divergence free**.

div
$$\mathbf{F}(x,y) = \nabla \cdot \mathbf{F}(x,y) = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}$$

Curl If curl F = 0, the function is **irrotational**.

$$\text{curl } \mathbf{F}(x,y,z) = \nabla \times \mathbf{F}(x,y,z) = \bigg(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z}\bigg)\mathbf{i} - \bigg(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z}\bigg)\mathbf{j} + \bigg(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\bigg)\mathbf{k}$$

Given $\mathbf{F}(x,y,z) = \langle M, N, P \rangle$, where all components have continuous second partial derivatives,

$$\operatorname{div}(\operatorname{curl} \mathbf{F}) = \mathbf{0}$$

3.2 Finding a Conservative Vector Field

A vector field \mathbf{F} is conservative when there exists another vector field f, such that $\nabla f = \mathbf{F}$. The function f is then called a potential function for \mathbf{F} .

Test for Conservative Vector Fields in the Plane

If M and N have continuous partial derivatives on the open disk R, the vector field $\mathbf{F}(x,y)=M\mathbf{i}+N\mathbf{j}$ is conservative if

$$\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}$$

Test for Conservative Vector Fields in Space

If M, N, and P have continuous partial derivatives in the open sphere Q, the vector field $\mathbf{F}(x,y,z) = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is conservative if and only if \mathbf{F} is irrotational, that is

$$\operatorname{curl} \mathbf{F} = \mathbf{0}$$

To find the potential function f(x, y, z), you can integrate over all partial derivatives, such as in Section 4.3.

4 Examples

4.1 Finding the Curl and Divergence of a Vector Field

Find the curl and divergence of ${\bf F}(x,y,z)=\langle x^3y^2z,x^2z,x^2y\rangle$ at the point (2,1,-1). Solution

$$\operatorname{div} \mathbf{F}(x,y,z) = \frac{\partial [x^3y^2z]}{\partial x} + \frac{\partial [x^2z]}{\partial y} + \frac{\partial [x^2y]}{\partial z} = 3x^2y^2z$$
$$3(2^2)(1^2)(-1) = -12$$

The divergence at $\mathbf{F}(2,1,-1)$ is -12.

$$\operatorname{curl} \mathbf{F}(x,y,z) = \left(\frac{\partial[x^2y]}{\partial y} - \frac{\partial[x^2z]}{\partial z}\right)\mathbf{i} - \left(\frac{\partial[x^2y]}{\partial x} - \frac{\partial[x^3y^2z]}{\partial z}\right)\mathbf{j} + \left(\frac{\partial[x^2z]}{\partial x} - \frac{\partial[x^3y^2z]}{\partial y}\right)\mathbf{k}$$

$$= (x^2 - x^2)\mathbf{i} - (2xy - x^3y^2)\mathbf{j} + (2xz - 2x^3yz)\mathbf{k}$$

$$= (4 - 4)\mathbf{i} - (2(2)(1) - 2^31^2)\mathbf{j} + (2(2)(-1) - 2(2^3)(1)(-1))$$

$$= -(4 - 8)\mathbf{j} + (-4 + 16)\mathbf{k} = 4\mathbf{j} + 12\mathbf{k}$$

The curl at $\mathbf{F}(2, 1, -1)$ is (0, 4, 12).

4.2 Testing for Conservative Vector Fields in the Plane

Decide if $\mathbf{F}(x,y) = \langle x^2y, xy \rangle$ is conservative or not.

Solution

$$\frac{\partial [x^2 y]}{\partial y} = x^2$$
$$\frac{\partial [xy]}{\partial x} = y$$
$$x^2 \neq y$$

Since the two partial derivatives are not equal, the vector field is not conservative.

4.3 Finding a Potential Function in Space

Find a potential function for $\mathbf{F}(x, y, z) = \langle 2xy, x^2 + z^2, 2yz \rangle$.

Solution

If f(x, y, z) is a function such that $\nabla f(x, y, z) = \mathbf{F}(x, y, z)$, then

$$f_x = 2xy$$

$$f_y = x^2 + z^2$$

$$f_y = 2yz$$

and integrating these in respect to x, y, and z gives

$$\int 2xy \, dx = x^2y + g(y, z)$$

$$\int (x^2 + z^2) \, dy = x^2y + z^2y + h(x, z)$$

$$\int 2yz \, dz = z^2y + k(x, y)$$

Finally, by comparing these answers, we obtain

$$g(y,z) = z^2y + K$$

$$h(x,z) = K$$

$$k(x,y) = x^2y + K$$

leading to the final answer of

$$f(x,y,z) = x^2y + z^2y + K$$